Modulation of boldenone induced hepatic and renal toxicity by *Moringa oleifera* as in albino rats

Ehab Tousson\(^1\); Ezar Hafez\(^1\); Ahmed Masoud\(^1\); Omer Ershidot\(^2\); Reem Ashour\(^*\)

\(^*\)1. Zoology Department, Faculty of Science, Tanta University, Egypt
2. Al-Balqa’ Applied University, Irbid University College, Jordan

(Aside: Tanta University, Egypt; Al-Balqa’ Applied University, Irbid University College, Jordan)

Corresponding author e.mail. reemashour2010@gmail.com

Abstract

Boldenone is an anabolic androgenic steroid and synthetic derivative of testosterone that was originally developed for veterinary use. Its use is very spread on veterinary medicine because its ability to increase protein synthesis. The aim of this study is to show the toxic effect in liver and kidney caused after the intramuscular injection of boldenone and focus on the role of *Moringa oleifera* as co-treated substance in improving hepatic and renal toxicity of boldenone. 40 adult rats were equally divided into four main groups. Group A injected intramuscularly with olive oil, group B treated only with *Moringa oleifera* 200 mg/Kg body weight, group C injected with boldenone undecylenate only once every three weeks, and co-treated group D which received both intramuscular boldenone undecylenate once every three weeks beside intragastrically dose of *Moringa* leaf extract twice=0lie/week. The results showed that all the animals in the control groups (A and B) appeared healthy till the end of the experiment. The groups treated with boldenone showed a significant elevation in the levels of serum aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), total protein, urea, and creatinine compared to the control group. While the oxidative stress in the groups treated with boldenone showed a significant increase in the level of Malondialdehyde (MDA), nitric oxide (NO), total protein, and total thiol and marked reduction in the level of Glutathione (GSH), Catalase activity (CAT), superoxide dismutase activity (SOD). On the other hand the groups treated with *Moringa olifera* showed a marked reduction in the level of ALT, AST, urea, creatinine, MDA, and NO. While the level of GSH, CAT, and SOD showed a significant increase comparing with the control group. These results explain the side effect of boldenone undecylenate on the liver and kidney which may cause hepatic and renal diseases and also the role of *Moringa olifera* in improving these results.

Keywords: Boldenone, *Moringa oleifera*, Rats, Kidney, Liver, Steroids, Anabolic androgenic steroid.

1 Introduction

Androgens are the hormones which promotes sexual characteristic in men. Also they are largely responsible for the changes which happen during puberty and adolescence (Wilson et al., 2002). Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone which used by the bodybuilders to improve the body image according to its ability to increase the protein synthesis (Penatti et al., 2009). Boldenone undecylenate is one of anabolic steroids which commonly used in the veterinary field. It differs from testosterone in the double bond in the 1,2 position which change its potency and characteristic (Soma et al., 2007). It is known under trade names: Equipoise, Ganabol, Equigan and Ultragran (El-Moghazy et al., 2012). Boldenone is known with its ability of increasing and improving the body mass through many physiological mechanisms which cause nitrogen retention in the body. It possesses the action to retain calcium, phosphorous,
potassium and chlorides. This action helps to get a better development of the bones only when the dosage is the right one or the recommended one. These constructive processes of mineralization and consolidation allow the bone regeneration in cases of rickets and Osteomalacy (Karila 2003; Hartgens and Kuipers 2004 Soma et al., 2007, Tan and Scally 2009; Bispo et al., 2009;Denham 2012; Alm-Eledeen and Tousson 2012).

In recent years this compound has become a favorite among athletes in order to improve the body image protein synthesis within cells, which results in the buildup of cellular tissue (anabolism), especially in muscles Matinhomeae et al., (2014). Also it caused an increase in the red blood cells number which increase blood viscosity allowing more oxygen to be carried to the cells improving the aerobic exercises (Verheyden et al., 2010).

Like other steroids, boldenone has marked side effect as it cause water retention, body fat gain, and gynecomastia due to elevated estrogen level also it cause infertility, hypertension, atherosclerosis, blood clotting hepatic neoplasms and carcinoma, tendon damage, psychiatric and behavioral disorders (Matinhomeae et al., 2014). Boldenone has a very long half-life and can show up on a steroid test for up to 1.5 years, due to the undecylate ester attached to the parent steroid. Trace amounts of the drug can be easily detected for months after discontinued use (El-Moghazy et al., 2012; Ali et al., 2013). It has dual effect on humans, directly and indirectly; directly by using this drug by bodybuilders to build muscle and indirectly through veterinary use for meat production (Tousson et al., 2012).

Moringa oleifera Lam (Moringaceae) is a fast growing tree with highly nutritional value (Ezejindu et al., 2014). Regarding to its great value, *Moringa* has been recommended as human food in developing tropical countries because of its ability to combat malnutrition (Palival et al., 2011; Atawodi et al., 2010). Various parts of this plants used in therapeutic purposes against variety of diseases like asthma, enlarged spleen and liver, inflammations, gastrointestinal infections, and hepatic and renal disorder (Rajanandh et al., 2012). *Moringa oleifera* has been studied to explore its ability in many disorders such as wound healing, antitumor, and antiinfertility also it is play important role as hepatoprotective and cardiothrombotic stimulants, antielcer, antihypertensive, cholesterol lowering, and anti-diabetic (Rajanandh et al., 2012).

In addition to all these, it is also used in nanotechnology as the leave extracts of *Moringa* is being used in the synthesis of nanoparticles which is safer and more cheaper comparing to the chemical methods. Also it is used in water purification (Arora et al., 2013).

Different parts of *Moringa oleifera* provide us with important minerals, vitamins, amino acids, and various phenolics in addition to zeatin, quercetin, β-sitosterol, caffeoylquinic acid and kaempferol (Nautiyal 2013).

Therefore, our study was designed to investigate the hepatic and renal damage caused by using boldenone undecylenate on male rat and study the role of *Moringa oleifera* in improving these damage.

2 Materials and Methods

Animals

The experiment adhered to the guidelines of the ethical committee of the national research center, Egypt. The experiments were performed on 40 male rats weighing 160-200 g were housed in metal cages under proper environmental conditions at room temperature 20-25°C. Food and water was supplied without restriction.

Preparation of *Moringa oleifera* leaf extraction

Fresh leaves of *Moringa oleifera* were collected and shade dried through exposing it to the air then it was milled and ground into powder. The powder was macerated into absolute alcohol at room temperature. The resulting filtrate was concentrated then evaporated in a water bath using evaporating dish at 45°C. A greenish paste was obtained (Buraimoh et al., 2011).

Experimental design

Rats were divided into 4 groups (10 rats each). Group A rats served as Control which injected intramuscularly with olive oil, group B will treated only with *Moringa oleifera* 200 mg/Kg body weight, group C rats receive 3 doses of 5 mg/Kg body weight boldenone undecylenate intramuscularly injections one dose every three weeks, and group D is the co-treated group which will receive both three doses of 5 mg/Kg body weight boldenone undecylenate one dose every three weeks beside intragastricaly dose of 200 mg/Kg body weight twice/week of *Moringa oleifera*. At the end of the experiment, the animals were fasted for 10 hours and euthanized with intravenous injection with sodium pentobarbital and subjected to a complete necropsy.

Sample preparation

Blood samples were individually collected from the inferior vena cava of each rat in non-heparinized glass tubes. Blood sample was centrifuged at 300 rpm for 15 min to separate serum. The collected serum was stored at −18°C.

Biochemical analysis

Blood serum was analyzed to determine the concentration of ALT, AST, alkaline phosphatase, total protein, albumin, urea, creatinine, Na, K, Mg, and also HDL, LDL, total lipid, cholesterol, and triglycerides.

Tissue homogenate

After the animals’ dissection liver and kidney tissues were prepared to homogenate by using Potter Elvenhjem tissue homogenizer. Tissue was prepared in grinder tube and then centrifuged at 3000 rpm for 15 min. During the homogenization process; the tube should be submersed in an ice bath to maintain the sample at 4°C. The sample frozen immediately stored and placed in a −80°C freezer to be ready for applying the different biochemical estimation (Chattopadhyay 2003; Mesbah et al., 2004 Tousson 2013).
Statistical Analysis

Results obtained were expressed as mean values ± SEM and data was subjected to one way ANOVA to perform statistical analysis to assess significant differences among treatment groups. The criterion for statistical significance was set at \(p<0.05 \) for the biochemical data. All statistical analyses were performed using SPSS statistical version 16 software package (SPSS® Inc., USA).

3 Results

The data presented in Figure 1 showed the changes occur in the level of ALT, AST, Albumin, alkaline phosphatase, and Total protein. As, we found that the level of ALT, AST, alkaline phosphatase, and total protein showed a significant increase in the groups treated with boldenone (G3) comparing with the control group (G1). However, the co-treated group with \(M. \) olifera (G4) showed significant decrease in the level of ALT, AST, alkaline phosphatase, and total protein comparing with boldenone group (G3).

Figure 1: Data presented in this figure showed the changes in the levels of serum ALT (IU/L), AST (IU/L), albumin (g/l), alkaline phosphatase (u/l), and total protein (mg/dl) in different groups under study. Control group (G1), \(M. \) olifera (G2), Boldenone group (G3) and co-treated group with \(M. \) olifera (G4).
The data presented in Figure 2 showed that the level of urea and creatinine significantly increase (p<0.05) in G3 (boldenone only) comparing with G1 (control group). Also, the level of urea and creatinine in the co-treated group with *Moringa olifera* (G4) showed marked reduction comparing with boldenone only group (G3).

Figure 2: This figure administered the changes in the level urea and creatinine. Control group (G1), *M. olifera* (G2), Boldenone group (G3) and co-treated group with *M. olifera* (G4).

We found that the level of Na, Ca, and Mg showed marked increase in the groups treated with boldenone comparing with the control group as presented in Figure 3. However, the level of potassium showed marked reduction in boldenone groups comparing with the control group (G1). By investigating the effect of *Moringa olifera* on the level of K, Na, Ca, and Mg, we found that the groups treated with *Moringa olifera* showed marked increase in the level of potassium and calcium comparing with the control group.
Table 1 represents the changes occur in the levels of cholesterol (mg/dl), triglycerides (mg/dl), HDL (mg/dl), LDL (mg/dl) and total lipid. As, a significant increase in the level of cholesterol (mg/dl), triglycerides (mg/dl), LDL (mg/dl) and total lipid was recorded in the groups treated with boldenone comparing with the control group. On the other hand, the level of HDL showed a marked decrease in the groups treated with boldenone comparing with the control group.

Moringa olifera play important role in improving the toxic effect occurred after using boldenone as observed in Table 1. As we found that the level of cholesterol (mg/dl), triglycerides (mg/dl), LDL (mg/dl) and total lipid showed marked reduction in the co-treated group (G4) comparing with the boldenone group (G3).

Table 2 expressed the changes occur in the level of liver and kidney MDA (nmol/g tissue), nitric oxide (NO; μmol/g tissue), Glutathione (GSH;U/g tissue), catalase (mmol/g tissue), superoxide dismutase (U/g), total protein (mg/g) and total thiol (mmol/g tissue) levels in different groups. As, we found that the level of liver and kidney MDA (nmol/g tissue), nitric oxide (NO; μmol/g tissue), total protein (mg/g) and total thiol (mmol/g tissue) showed marked increase in the groups treated with boldenone comparing with the control group. On the other hand, the level of Glutathione (GSH;U/g tissue), catalase (mmol/g tissue), and superoxide dismutase (U/g) showed a marked reduction in groups treated with boldenone comparing with the control group.

BY checking the effect of *Moringa olifera*, we found that it plays important role in improving the toxic effect of boldenone. As, we found that the groups treated with *Moringa olifera* showed significant increase in the level of Glutathione (GSH;U/g tissue).

Table 1: Changes in the serum cholesterol (mg/dl), triglycerides (mg/dl), HDL (mg/dl), LDL (mg/dl) and total lipid levels in different groups under study.

<table>
<thead>
<tr>
<th></th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>115.5 ± 0.844*</td>
<td>102.9 ± 0.558**</td>
<td>149.0 ± 1.886</td>
<td>123.2 ± 0.691**</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>63.41 ± 0.618*</td>
<td>56.58 ± 0.589*</td>
<td>78.50 ± 1.306</td>
<td>69.79 ± 0.405**</td>
</tr>
<tr>
<td>HDL</td>
<td>40.21 ± 0.343*</td>
<td>44.19 ± 0.5195**</td>
<td>30.94 ± 0.1485</td>
<td>35.35 ± 0.484**</td>
</tr>
<tr>
<td>LDL</td>
<td>45.23 ± 0.626*</td>
<td>40.49 ± 0.815**</td>
<td>57.48 ± 0.2756</td>
<td>51.16 ± 0.912**</td>
</tr>
<tr>
<td>Total lipid</td>
<td>264.0 ± 3.503*</td>
<td>251.1 ± 2.942**</td>
<td>382.9 ± 1.382</td>
<td>348.3 ± 2.868*</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± S.E.M of 10 observations. Significant difference from boldenone group (G3) at *p*<0.05. Where G1: Control group; G2: *Moringa* group; G3: Boldenone group; G4: Co-treated boldenone group with *Moringa*.

4 Discussion

Boldenone is known to increase the protein synthesis which affects the body weight through many physiological mechanisms increasing the nitrogen retention. This fact makes boldenone very popular among bodybuilders in order to improve the body image. Also it is used in the veterinary field in the developing countries because of its ability in increasing the body weight. So, boldenone affect human directly and indirectly (Gabr et al., 2009; El-Moghazy et al., 2012). The study of Neri et al. (2011) reported that a prolonged anabolic androgenic steroid administration provokes an increase in the activities of liver lysosomal hydrolases.

Frankenfel et al. (2014), reported in their study that oxidative stress is implicated not only in carcinogenesis, but also in the pathogenesis of a wide range of diseases that can affect liver, heart, kidney and other tissues. Oxidative stress is now recognized to be associated with more than 200 diseases, as well as with the normal aging process (Nelson et al., 2006). Active oxygen species and free radicals play an important role in the pathogenesis of several human diseases, such as rheumatoid arthritis, and cardiovascular diseases including cancer (Paliwal et al., 2011; Hertog et al., 1997).

Moringa oleifera considered as one of the world’s most useful tree, as almost every part of the plant can be used for food or has some other beneficial properties (Anamika et al., 2010). The leaves and fruits are found to have hypcholesterolaemic activity in Wistar rats and rabbits, respectively (Ghasi et al., 2000; Mehta et al., 2003). Similarly, the flowers and roots are used in folk remedies, for tumors, the seeds for abdominal tumors, leaves applied as poultice to sores, rubbed on temples for headaches and are said to have purgative properties (Anwar et al., 2007).
Table 2: Changes in liver and kidney MDA (nmol/g tissue), nitric oxide (NO; μmol/g tissue) Glutathione (GSH; U/g tissue), catalase (mmol/g tissue), superoxide dismutase (U/g), total protein (mg/g) and total thiol (mmol/g tissue) levels in different groups under study.

<table>
<thead>
<tr>
<th>Test</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver MDA</td>
<td>44.31 ± 0.211*</td>
<td>40.84 ± 0.203*</td>
<td>53.93 ± 0.4759</td>
<td>46.52 ± 0.231*</td>
</tr>
<tr>
<td>GSH</td>
<td>68.65 ± 0.333*</td>
<td>71.86 ± 0.336*</td>
<td>61.01 ± 0.7028</td>
<td>64.44 ± 0.315*</td>
</tr>
<tr>
<td>Catalase</td>
<td>6.600 ± 0.0447*</td>
<td>7.360 ± 0.0427*</td>
<td>4.470 ± 0.1033</td>
<td>5.400 ± 0.0422*</td>
</tr>
<tr>
<td>SOD</td>
<td>25.50 ± 0.156*</td>
<td>27.48 ± 0.1083**</td>
<td>17.57 ± 0.3197</td>
<td>21.52 ± 0.116**</td>
</tr>
<tr>
<td>Total protein</td>
<td>348.2 ± 1.641*</td>
<td>357.4 ± 1.673*</td>
<td>412.2 ± 3.989</td>
<td>382.1 ± 1.272**</td>
</tr>
<tr>
<td>Total thiol</td>
<td>6.177 ± 0.0393*</td>
<td>5.834 ± 0.0276**</td>
<td>6.695 ± 0.08024</td>
<td>6.241 ± 0.0309**</td>
</tr>
<tr>
<td>kidney MDA</td>
<td>77.38 ± 0.557*</td>
<td>70.12 ± 0.581*</td>
<td>91.54 ± 1.370</td>
<td>79.10 ± 0.613*</td>
</tr>
<tr>
<td>GSH</td>
<td>67.26 ± 0.396**</td>
<td>71.97 ± 0.472*</td>
<td>55.55 ± 1.168</td>
<td>61.15 ± 0.360**</td>
</tr>
<tr>
<td>Catalase</td>
<td>7.906 ± 0.0349*</td>
<td>8.538 ± 0.0305*</td>
<td>4.424 ± 0.07771</td>
<td>5.639 ± 0.0297**</td>
</tr>
<tr>
<td>SOD</td>
<td>9.614 ± 0.050*</td>
<td>10.38 ± 0.0488*</td>
<td>7.125 ± 0.1061</td>
<td>8.659 ± 0.04797*</td>
</tr>
<tr>
<td>Total protein</td>
<td>609.7 ± 2.297*</td>
<td>616.9 ± 2.187**</td>
<td>693.7 ± 5.661*</td>
<td>652.1 ± 2.158**</td>
</tr>
<tr>
<td>Total thiol</td>
<td>10.17 ± 0.0508*</td>
<td>9.115 ± 0.0469*</td>
<td>13.21 ± 0.1149</td>
<td>11.21 ± 0.0449**</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± S.E.M of 10 observations. Significant difference from the control group (G1) at *p<0.05. Significant difference from Boldenone group (G3) at *p<0.05. Where G1: Control group; G2: Moringa group; G3: Boldenone group; G4: Co-treated Boldenone group with Moringa.

Moringa oleifera considered as one of the world’s most useful tree, as almost every part of the plant can be used for food or has some other beneficial properties (Anamika et al., 2010). The leaves and fruits are found to have hypocholesterolaemic activity in Wistar rats and rabbits, respectively (Ghasi et al., 2000; Mehta et al., 2003). Similarly, the flowers and roots are used in folk remedies, for tumors, the seeds for abdominal tumors, leaves applied as poultice to sores, rubbed on temples for headaches and are said to have purgative properties (Anwar et al., 2007).

The aim of this study is to investigate the effect of boldenone on liver and kidney which showed a marked alteration in the hepatic and renal functions in groups injected with boldenone and to study the ability of *Moringa* in improving this damage. As *Moringa oleifera* has been reported for its potent antioxidant and free radical scavenging activities in vitro and in vivo (Singh et al., 2009; Sreelatha and Padma 2009; Omobowale et al., 2014; Atawodi et al., 2010). By investigating the effect of boldenone and *Moringa oleifera* on the body weight, we found that the groups treated with both boldenone and *Moringa oleifera* showed a marked increase in the body weight comparing with control group. Our results are in agreement with the studies of (Thabet et al., 2010; Neamat-Allah 2014; Barakat et al., 2015; Tousson et al.,...
2012; Halaby et al., 2013; Al-Malki and El Rabey 2015; Ahmed et al., 2014; Hassan et al., 2015). Our results are not in agreement with the studies of (Oda et al., 2012; Cannizzo et al., 2007; Shabir et al., 2015) as they reported that the treatment with boldenone had no significant effect on the final body weight and also we are not in agreement with (Adedapo et al., 2009; Omobowale et al., 2014), as they proved in their studies that the animals in the control group gained more weight compared to the animals treated with Moringa oleifera leaf.

Our results showed a significant decrease in the level of potassium (k) and increase in the level of magnesium (Mg), sodium (Na), calcium (Ca) in the groups treated with boldenone comparing with the control group. As, boldenone promote erythropoietin stimulating factor that, in turn, stimulates the bone marrow growth that leads to an increased production of red blood cells. The release of erythropoietin in the kidneys, cause nitrogen, sodium, potassium, and phosphorus retention and decrease the urinary excretion of calcium. Our result is in agreement with Neamat-Allah (2014) who reported a significant increase in serum level of Ca in the groups treated with boldenone.

The elevation of a given enzyme activity in serum reflects its increase rate of entrance into serum from damaged liver cells like AST, ALT, ALP Ujah et al., (2013). After estimation the serum liver and kidney functions we found that the groups treated with boldenone showed a significant increase in the level of ALT, AST, Albumin, Total protein, urea and creatinine compared to the control group. Our results are in agreement with Alm-Eldeen and Tousson (2012), El-Moghazy et al., (2012), Gabr et al., (2009), Neamat-Allah 2014, Mayada et al., (2015), and Urhausen et al., (2003). While the groups treated with Moringa oleifera showed marked reduction in the level of ALT, AST, alkaline phosphatase, albumin, urea and creatinine. Our results are in agreement with the studies of Saalu et al., (2012), Al-Malki and El Rabey (2015), Sheikh et al., (2014), Das et al., (2012), Fakurazi et al., (2012), Aja et al., (2013), Omobowale et al., (2014).

Beside the toxic and hormonal side effects of boldenone, our result revealed a marked elevation in the level of total lipid, LDL, cholesterol and triglycerides after the intramuscular injection of boldenone, whereas the level of HDL showed a significant decrease compared with the control group. Our results are in agreement with the studies of El-Moghazy et al., (2012) and Shabir et al., (2015). Our results are note in agreement with Hartgens and Kuipers (2004) as they reported that the level of triglyceride did not show any alteration in of serum triglyceride level but we agreed with them in the significant increase in the level of LDL and the significant decrease in the level of HDL.

By evaluating the effect of Moringa oleifera on serum lipid profile, we found a significant increase in the level of serum HDL parallel with significant reduction in the level of serum LDL and triglyceride. Our result in agreement with Okwari et al (2015), Prasanna Kumar and Mandapaka (2013), Ahmed et al., (2014), Halaby et al., (2013), and Jain et al., (2010).

Boldenone treatment caused an oxidative stress situation as indicated by enhanced MDA, SOD, and GSH extent. Our results recorded significant increase in the level of MDA, total protein, and total thiol. While a significant decrease in the level of GSH, CAT, and . Our results are in agreement with Mayada et al., (2015), El-Moghz et al., (2012), Frankenfeld et al., (2014).

By evaluating the effect of Moringa oleifera in improving the side effect caused by boldenone, we found that the level of MDA showed marked reduction comparing with the group treated with boldenone. While the level of GSH, CAT, and SOD showed marked increase comparing with the group treated with boldenone and the control group. These results are in agreement with Al-Malki and El Rabey (2015), Ahmed et al., (2014), Fakurazi et al., (2012), Das et al., (2012), and Rajanandh et al., (2012).

In conclusion, our results prove that using boldenone can cause serious damage to liver and kidney estimated by marked elevation in MDA, LDL, serum activities of ALT, AST, ALP, and level of urea and creatinine. Also, we Administration of Moringa oleifera improved the damage caused by boldenone beside its protective potentials on liver and kidney.

Conflicts of interest

The authors had no conflicts of interest to declare in relation to this article. This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors

5 References

