Evaluation of circulating antigen in urine technique for diagnosis of

Schistosoma haematobium infection

Ahmed Abdelhalim Yameny

Society of Pathological Biochemistry and Hematology, Egypt

Ahmed A. Yameny (Email: dr.ahmedyameny@yahoo.com)

DOI: 10.21608/jbaar.2018.155494

ABSTRACT

Background: Diagnosis of urinary and intestinal schistosomiasis by detecting circulating *Schistosome* antigens in serum and urine have been developed and assessed to dissolve problems with parasitological diagnosis in low endemic areas or for early diagnosis, this study aimed to evaluate commercially available kit, using circulating antigen in urine as an alternative for microscopic testing of urine to diagnose *S.haematobium* infection

Subjects and methods: This is a cross-sectional study designed to evaluate circulating antigen a commercially available kit was used for determining urinary schistosomiasis in the study population, this performed on 50 positive *S.haematobium* samples and 50 negative samples for individuals matching in age and gender, besides, urine microscopic examination was done for detection of *S.haematobium* eggs by sedimentation centrifugation and nuclepore filtration techniques.

Results: The results showed that circulating antigen kit in urine had a sensitivity of 56% and specificity of 76%. PPVs were 70% whereas NPVs were 63.3 %. As for diagnostic efficiency, it was 66%, where the area under the curve (AUC) was sufficient 0.63. **Conclusion and Recommendations:** Years ago this commercial kit used in this study and all medical laboratories in Egypt for detection of schistosome antigen in urine is called schistofast bilharzial antigen in urine, this study showed low sensitivity (56%) and low specificity (76) than expected results for detection of circulating antigen and they are generally more expensive than microscopic examination.

Keywords: *Schistosoma haematobium*, CAg, circulating antigen, validity, urinary schistosomiasis.

1. **Introduction**

Diagnosis of schistosomiasis is usually performed by parasitological (microscopic detection of eggs), and/or immunological methods (antibody and antigen detection)\(^{(1)}\). Methods have been developed for the diagnosis of light infections, which developed on either detection of antibodies specific to schistosome antigens or the presence of schistosome circulating antigens (SCA) in patients (Salah et al., 2006)\(^{(2)}\). Schistosome antigens are present in the serum and urine of infected subjects \(^{(3)}\). According to their migratory behavior in immunoelectrophoresis, they are
commonly referred to as circulating anodic antigens (CAA) and circulating cathodic antigens (CCA). These two circulating adult worm antigens are the basis of antigen capture immunoassays (4). Somatic schistosome antigens, such as circulating anodic antigen and circulating cathodic antigen, can be detected and quantified with labeled monoclonal antibodies in serum or urine of infected individuals (5), many attempts have been made to identify the egg antigens which are responsible for inducing those reactions and which proved also to be useful immunodiagnostic reagents (McManus and Loukas, 2008) (6). These tests can differentiate between past and active infections, as the circulating antigens are probably present only when there is active infection (Doenhoff 2004JS7), circulating antigens are released from living worms, antigen levels may correlate directly with parasite load, whilst microscopy does not. This may make the circulating antigen test useful in monitoring the dynamics of worm burdens and clearance of worms after treatment (Cavalcanti 2013; Rollinson 2013)JS8,9).

During the acute phase or in recently reinfected cases of schistosomiasis, immature worms may produce worm antigens (e.g., CCA) before eggs are excreted, this process may result in a positive result using the circulating antigen assay and a negative result using a microscopic technique for eggsJS10,11). The level of antigen correlates well with the intensity of infection and is rapidly cleared from the circulation following successful treatmentJS12,13). Feldmeier and others measured CAA and CCA levels four months post-treatment and their results showed a significant decrease in serum CAA and CCA after treatment with praziquantel, but they related this decrease to infection with S.mansoni and not to S.haematobiumJS14). The main advantage of antigen detection, and particularly CAA detection in serum, is the fact that antigen levels show little fluctuation. A one-point determination, therefore, provides more reliable quantitative data than in the case of a parasitological diagnosisJS15). On the other hand, the main disadvantages of antigen detection are related to the availability and cost of the reagents, and to relatively time-consuming and expensive (ELISA) assay, which also is not suitable to use outside a laboratory settingJS15).

Questionnaire and chemical reagent strip for haematuria and proteinuria can be considered for the diagnosis of S. haematobium where microscopy is unavailable In areas with a high prevalence of infectionJS16,17), recently Schistosomiasis infection was decreased in many countries and has been eliminated in Iran, Lebanon, Morocco and Tunisia with an absence of newly recorded cases in the past few years (WHO, 2007)JS18). In Egypt (2016), due to different control measures, the overall prevalence S.haematobium and S.mansoni fell to less than 0.2%, and Egypt has started a campaign to reach the final elimination of schistosomiasis by 2020JS19). So many medical laboratories in Egypt using a commercially available kit by circulating antigen (Schistofast ABC Diagnostic), this study aimed to evaluate commercially available kit, using circulating antigen in urine as an alternative for microscopic testing of urine to diagnose S.haematobium infection.

2. Material and methods

2.1. Study population and ethical consideration

This study included 100 patients attending Ministry of health laboratory centers, in El-Fayoum Governorate, these study subjects were randomly selected irrespective of the age-group and both genders were included. All the studied population was informed about the purpose of sample collection and their consent was obtained. Patients were free to refuse sample collection.

2.2. Study design

This research is a cross-sectional study designed to evaluate circulating antigens by a commercially available kit (Schistofast ABC Diagnostic, New Damietta city ARE) to determine urinary schistosomiasis in the study population. This study
was targeting customers who came to laboratories of health centers for urine analysis. This was performed on 50 positive *S.haematobium* samples and 50 negative samples for individuals matching in age and sex.

2.3. Collection and processing of urine samples

Clean specimen bottles were labeled with the needed information and issued to the participating individuals whose informed consent was sought earlier, each patient was given a wide mouth screw-capped container into which to void urine. This was carried out between 10.00 am and 2.00 pm when the ova count of *S.haematobium* is expected to be at its peak (20). In this study, urinary schistosomiasis was defined as the presence of ova of *S.haematobium* in the urine.

2.4. Urine microscopy

Urine samples were examined for the presence of *S.haematobium* eggs as in the sedimentation method of Cheesbrough (2006) (21). Each urine sample was mixed thoroughly with a glass rod and three samples were taken each 10 ml urine, one sample for sedimentation centrifugation, the other 10 ml urine sample for Nuclepore membrane filtration technique, and the third sample for circulating antigen in urine detection. The first 10 ml transferred into a centrifuge tube and centrifuged at 2000 rpm for 5 minutes at room temperature. The supernatant was then discarded and sediment was transferred to a microscope glass slide and covered with a coverslip. A drop of Lugol’s Iodine was added onto the coverslip before the examination. Examination of the entire sediment was carried out using x10 objective of a compound light microscope.

The second 10 ml urine sample was examined using the Nuclepore membrane filtration technique for *S.haematobium* eggs detection as in the method of Cheesbrough (2009) (22). The third urine sample was examined using a commercially circulating antigen kit according to the assay procedures.

2.5. Assay procedure:

For 100 urine samples, were tested for the presence of circulating antigen by a commercially available kit (Schistofast ABC Diagnostic, New Damietta city ARE). Which were the same kit used by medical laboratories in Egypt), these steps according to the company method.

Note: 1- the urine sample was centrifuged (2000 rpm for 5 min.) to remove any turbidity e.g. pus cells, RBCs, ----etc. If centrifuge was not available, urine was left for about 30 min. the supernatant was used.

2- To test the positive and the negative controls (precoated Devices), the assay procedure was followed up except step no. 1 (the addition of urine sample).

* the membrane surface of the test cartilage washed by adding 3 drops of solution(A)(wash solution), drops were allowed for complete absorption.

1- Three drops or (200 ul) of urine was added (supernatant), using a new plastic pipette/sample

2- solution (B), blocking reagent, shake gently, 2 drops were added, drops were allowed to be completely absorbed

3- solution (C), specific MoAb solution, shaken gently, 2 drops were added, drops were allowed to be completely absorbed

*Washed by addition of 3 drops of solution (A), the drops allowed for completely absorbed.

4- solution (D), alkaline phosphatase conjugate, shake gently, 2 drops were added, drops allowed to be completely absorbed.

* Washed by addition of 3 drops of solution (A), the drops allowed for complete absorption.
5. Two drops or (100 ul) of solution (E), substrate solution, were added using a new plastic pipette, and waited for 2 minutes.

6- Two drops of solution (F), stopper solution, were added, allowed to be completely absorbed, and the result was taken.

Result and report:

No color -------------- Negative bilharzial antigen.

Violet color --------------- Positive bilharzial antigen.

Note: the violet color intensity may be weak or strong according to the concentration of the bilharzial antigen in the urine sample.

2.6. Stool microscopy:

Stool samples were examined for the presence of S.mansoni eggs, only negative stool samples for S.mansoni eggs of 100 population study samples were taken for that research study.

Results collected, coded, tabulated, and analyzed through computer facilities using statistical methods S.haematobium infection was defined as any number of eggs greater than zero found in 10 ml of urine, was performed to compare with circulating antigen by commercially kit for Diagnosis of Schistosoma haematobium Infection.

data analysis Correlation of the circulating antigen results with the gold-standard parasitological data was done using diagnostic accuracy tests. Sensitivity, specificity, positive and negative predictive values (PPV and NPV), likelihood ratios for positive results (LR+) and diagnostic efficiency, and the area under the curve (AUC) were calculated. In this study, we considered using the sum of Nuclepore membranes filtration technique and Centrifugation sedimentation technique results as a gold standard to compare them with circulating antigen by commercially kit.

Table (1): shows a diagnostic performance of circulating antigen in urine (CAg) by a commercially available kit (Schistofast ABC Diagnostic) as a diagnostic method for Schistosoma haematobium infection compared to microscopic examination techniques as the gold standard. In this study, we considered using the sum of Nuclepore membrane as filtration technique and Centrifugation sedimentation technique results as a gold standard.

The results showed that circulating antigen in urine (CAg) by a commercially available kit had a sensitivity of 56% and specificity of 76%. PPVs were 70% whereas NPVs were 63.3%. As for diagnostic efficiency, it was (66%), where the area under the curve (AUC) was sufficient (0.6).
Table (1): Shows the percentage of *S. haematobium* infection using a circulating antigen in urine (CAg) as a diagnostic method for *schistosoma haematobium* compared to microscopic examination techniques as the gold standard.

<table>
<thead>
<tr>
<th>Test</th>
<th>Microscopic techniques</th>
<th>Total No.</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV %</th>
<th>NPV %</th>
<th>PLR %</th>
<th>NLR %</th>
<th>Diagnostic Efficiency %</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circulating antigen in urine (CAg)</td>
<td>No</td>
<td>38 22 60</td>
<td>56</td>
<td>76</td>
<td>70</td>
<td>63.3</td>
<td>2.33</td>
<td>0.58</td>
<td>66</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>12 28 40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50 50 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion
Detection of circulating schistosome antigens secreted by live schistosomes in body fluids with specific monoclonal antibodies (MAbs) is a promising approach to the detection of active infection and the assessment of treatment efficacy and effectiveness of future vaccines (24,25).

During schistosome infection, many of the eggs laid by the female worms become trapped in the tissues. The liver is particularly affected in *S. mansoni* and *S. joponicum* infections, while the bladder and ureters are the main organs of egg deposition by *S. haematobium* worms. As the major factor in the pathogenesis of schistosomiasis is the host granulomatous response to antigens secreted from the trapped eggs in host tissues (Pearce, 2005) (26). Furthermore, early diagnosis is not possible because eggs are not found in feces and urine until flukes reach maturity (Armour et al., 1997) (27). Therefore, several Immunodiagnostic methods have been developed for the diagnosis of light infections.

Years ago this commercial kit which was used in this study also used in all medical laboratories in Egypt for detection of Schistosoma antigen in urine is called schisto-fast bilharzial antigen in urine manufactured by ABC diagnostic, Damietta, Egypt. This showed that the sensitivity of circulating antigen in urine was 56%, where the specificity was 76% and positive predictive value 70% and kappa coefficient was 0.32 (fair). As for diagnostic efficiency it was (66%), where the area under the curve (AUC) was sufficient (0.6), while many of the assays based on antigen detection displays both high specificities and high sensitivities (1).

Zienab A, et al., (1995) detected circulating Schistosome antigen (CSA) in 97% of urine samples of *S. mansoni* infected school children, CSA was detectable in 100% of urine samples of mixed *S. mansoni* and *S. haematobium* infected patients. They also found the specificity of the CSA reached 98% (28).

Ndhlouvu P, et al., (1996) evaluated circulating anodic antigen (CAA) levels in different age groups in a Zimbabwean between rural community endemic for *schistosoma haematobium*. They found that specificity was 100% and the overall sensitivity was 97% (29).

Mahfouz A, et al., (2012) evaluated different immunological techniques for the diagnosis of *schistosoma haematobium* in Egypt through detecting soluble egg antigen (SEA) in urine by different methods (latex agglutination technique LAT, sandwich ELISA, and dot-ELISA) They found the sensitivity of circulating antigen in urine ranged from 88.66% to 94.66%, while the specificity ranged from 91.25% to 96.25% (30).

Circulating Schistosome antigen(CSA) disappears rapidly after treatment and can therefore
be used for assessment of cure. However, the sensitivity of antigen detection varies from 55% to 100%, being low in low endemic areas with no advantage over stool and urine examination\(^{(1)}\).

Conflict of interest
There are no conflicts of interest.

Financial support and sponsorship
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

5. References:

